A Survey on Neural Network based Automatic Segmentation of Brain Magnetic Resonance Images
نویسندگان
چکیده
Medical Images are used as an important tool for determination of Pathological condition of the vital organs of the body like brain, lungs, liver, etc. Segmentation is the first step towards automatic processing for analysis and evaluation of medical images. Especially, image segmentation is a prerequisite process for image content understanding in brain MRI for the development of a computer aided diagnosis (CAD) system. It is a technique, which partitions an image into units, which are homogeneous with respect to one or more characteristics. Automatic Segmentation of brain MRI is used as a diagnostic tool in neuro medicine. Abnormal growth of brain tissues can be detected with the help of segmentation techniques. Changes in volumetric growth of brain tissues such as White Matter (WM), Gray Matter (GM) and Cerebrospinal fluid (CSF) can help in the early detection of neural disorders like epilepsy Alzheimer’s disease, parenchymal bleeds, etc. Even though several automated methods are available for segmentation of Brain MRI, there is no clear differentiation between these techniques about the suitability for various neural disorders. We presented a review of the methods used in brain segmentation. The review covers imaging techniques, magnetic resonance imaging and methods for segmentation and how a known Neural Network with fixed structure and training procedure could be applied to resolve medical imaging problem pertaining to Brain image segmentation.
منابع مشابه
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملروش جدید برای آشکارسازی سریع تومور مغز با استفاده از ضریب شباهت Bhattacharyya، تبدیلات رنگ و شبکه عصبی
Background: Magnetic resonance imaging (MRI) is widely applied for examination and diagnosis of brain tumors based on its advantages of high resolution in detecting the soft tissues and especially of its harmless radiation damages to human bodies. The goal of the processing of images is automatic segmentation of brain edema and tumors, in different dimensions of the magnetic resonance images. M...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کامل